康健

时间:2022-05-06浏览:6008设置

康健课题组介绍

课题组长  研究介绍  发表论文  本组成员

 

 

康健,副教授

通讯地址:上海市浦东新区华夏中路393号威尼斯官网9778818

电子邮件: kangjian@shanghaitech.edu.cn 

个人简历

2022 -     副教授,威尼斯官网9778818

2019 - 2022  教授,苏州大学

2017 - 2019  博士后,佛罗里达大学强场国家实验室

2013 - 2017  博士后,明尼苏达大学

2007 - 2013  博士,约翰霍普金斯大学

  

 

 

My research field lies in theories of correlated electron systems and their collective behavior, including high-temperature superconductivity, nematicity, magnetism, etc. Recently, I focus on the exotic phenomena discovered in the twisted bilayer graphene and other related moire systems, especially the interplay between topology and electronic correlations in this family.

 

本课题组长期诚聘博士后研究员、硕博连读研究生。有意申请者请直接与课题组长联系(kangjian@shanghaitech.edu.cn)

 

 

(*corresponding author)

1.     Cascades between light and heavy fermions in magic-angle twisted bilayer graphene, J. Kang*, B. A. Bernevig, and O. Vafek*, Phys. Rev. Lett. 127, 266402 (2021).

2.     Realization of topological Mott insulator in a twisted bilayer graphene lattice model, BB Chen,   YD Liao, Z Chen, O Vafek, J Kang*, W Li*, ZY Meng*, Nat. Comm. 12, 1 (2021).

3.     Lattice model for the Coulomb interacting chiral limit of the magic angle twisted bilayer graphene: symmetries,   obstructions and excitations, O. Vafek* and J. Kang*, Phys. Rev. B 104, 075143 (2021).     

4.       Momentum space quantum Monte Carlo on twisted bilayer Graphene, X. Zhang, G. Pan, Y. Zhang, J. Kang, and Z. Y. Meng, Chin. Phys. Lett. 38, 077305 (2021).

5.       Correlation-induced insulating topological phases at charge neutrality in twisted bilayer graphene, Y. D. Liao, J. Kang*, C. N. Breio, X. Y. Xu, H.-Q.Wu, B. M. Andersen*, R. M. Fernandes,   Z. Y. Meng*, Phys. Rev. X, 11, 011014 (2021).

6.      Correlated Insulating Phases in the Twisted   Bilayer Graphene, Y. D. Liao, X. Y. Xu, Z. Y. Meng*, and J. Kang*, Chin. Phys. B, 30, 017305 (2021).

7.   Topological and nematic superconductivity mediated by ferro-SU(4) fluctuations in twisted bilayer graphene, Y. Wang*, J. Kang, and R. M. Fernandes*, Phys. Rev. B 103, 024506 (2021).     

8.   Towards the hidden symmetry in Coulomb interacting twisted bilayer graphene: renormalization group approach, O. Vafek*   and J. Kang*, Phys. Rev. Lett. 125, 257602 (2020).

9.   Non-Abelian Dirac node braiding and near-degeneracy of correlated phases at odd integer filling in magic angle twisted bilayer graphene, J. Kang* and O. Vafek*, Phys.   Rev. B 102, 035161 (2020).

10. Crystalline nodal topological superconductivity in monolayer NbSe2, D. Shaffer, J. Kang, F. J. Burnell*, and R. M.   Fernandes*, Phys. Rev. B 101, 224503 (2019).

11. Intertwined spin-orbital coupled orders in the iron-based superconductors, M. H. Christensen*, J. Kang,   and R. M. Fernandes, Phys. Rev. B 100, 014512 (2019).

12. Strong coupling phases of partially filled twisted bilayer graphene narrow bands, J. Kang* and O. Vafek*,   Phys. Rev. Lett., 122, 246401 (2019).

13. Superconductivity at an antiferromagnetic quantum critical point: the role of energy fluctuations, J. Kang, R.   Fernandes, E. Abrahams, and P. Wolfle, Phys. Rev. B, 98, 214515 (2018).

14. Symmetry, maximally localized Wannier states, and a low-energy model for the twisted bilayer graphene narrow bands, J. Kang* and O. Vafek*, Phys. Rev. X, 8, 031088 (2018).

15. Time-reversal symmetry-breaking nematic superconductivity in FeSe, J. Kang, A. V. Chubukov, and R. M. Fernandes,   Phys. Rev. B, 98, 064508 (2018).

16. Orbital loop currents in iron-based superconductors, M. Klug, J. Kang, R. M. Fernandes, and J. Schmalian, Phys.   Rev. B, 97, 155130 (2018).

17. Superconductivity in FeSe: the role of nematic order, J. Kang, R. M. Fernandes, and A. V. Chubukov, Phys. Rev.   Lett., 120, 267001 (2018).

18. Competing magnetic orders in the superconducting state of heavy-fermion CeRhIn5, P. F. S. Rosa, J. Kang,   Yongkang Luo, N. Wakeham, E. D. Bauer, F. Ronning, Z. Fisk, R. M. Fernandes,   and J. D. Thompson, Proc. Natl. Acad. Sci. USA 114, 5384 (2017).

19. Dominant Spin-Triplet Superconductivity   Revealed by the Upper-Critical-Field Measurements in K2Cr3As3, H. Zuo, J. K.   Bao, Y. Liu, J. Wang, Z. Jin, Z. Xia, L. Li, Z. Xu, J. Kang, Z. Zhu, and   G.-H. Cao, Phys. Rev. B, 95, 014502 (2017).

20. Spin anisotropy due to spin-orbit coupling in optimally hole-doped Ba0.67K0.33Fe2As2, Y. Song, H. Man, R.   Zhang, X. Lu, C. Zhang, M. Wang, G. Tan, L.-P. Regnault, Y. Su, J. Kang, R.   M. Fernandes, and P. Dai, Phys. Rev. B 94, 214516 (2016).

21. Superconductivity in FeSe thin films driven by the interplay between nematic fluctuations and spin-orbit coupling,   J. Kang and R. M. Fernandes, Phys. Rev. Lett. 117, 217003 (2016).

22. Robustness of quantum critical pairing against disorder, J. Kang and R. M. Fernandes, Phys. Rev. B 93, 224514   (2016).

23. Spin-Driven Nematic Instability in   Realistic Microscopic Models: Application to Iron-Based Superconductors, M.   H. Christensen, J. Kang, B. M. Andersen, and R. M. Fernandes, Phys. Rev. B 93,   085136 (2016).

24.Double-Q spin-density wave in iron   arsenide superconductors, J. M. Allred, K. M. Taddei, D. E. Bugaris, M. J.   Krogstad, S. H. Lapidus, D. Y. Chung, H. Claus, M. G. Kanatzidis, D. E.   Brown, J. Kang, R. M. Fernandes, I. Eremin, S. Rosenkranz, O. Chmaissem, R.   Osborn, Nat. Phys. 12, 493 (2016).

25. Spin reorientation driven by the interplay between spin-orbit coupling and Hund's rule coupling in iron pnictides, M. H. Christensen, J. Kang, B. M. Andersen, I. Eremin, and R. M.   Fernandes, Phys. Rev. B 92, 214509 (2015).

26. Phenomenological theory of the superconducting state inside the hidden-order phase of URu2Si2, J. Kang and   R. M. Fernandes, Phys. Rev. B 92, 054504 (2015).

27. Transport Theory of Metallic B20   Helimagnets, J. Kang and J. Zang, Phys. Rev. B 91, 134401 (2015).

28. Interplay between tetragonal magnetic order, stripe magnetism, and superconductivity in iron-based materials, J.   Kang, X. Wang, A. V. Chubukov, and R. M. Fernandes, Phys. Rev. B 91,   121104(R) (2015).

29. Magnetic order without tetragonal-symmetry-breaking in iron arsenides: microscopic mechanism and spin-wave spectrum, X. Wang, J.   Kang, and R. M. Fernandes, Phys. Rev. B 91, 024401 (2015).

30. Manipulation of gap nodes by uniaxial strain in iron-based superconductors, J. Kang, A. F. Kemper, and R. M. Fernandes,   Phys. Rev. Lett. 113, 217001 (2014).

31. Dimer Impurity Scattering,   “Reconstructed” Nesting and Density-Wave Diagnostics in Iron Pnictides, J.   Kang, and Z. Tesanovic, Phys. Rev. B 85, 220507 (2012).

32. Theory of Valley-Density Wave and Hidden   Order in Iron-Pnictides, J. Kang, and Z. Tesanovic, Phys. Rev. B 83,   020505(R) (2011).

33. Spin Fluctuation Dynamics and Multiband   Superconductivity in Iron Pnictides, V. Stanev, J. Kang, and Z. Tesanovic,   Phys. Rev. B 78, 184509 (2008).

 


返回原图
/

Baidu
sogou